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Review

Human immunodeficiency virus type 1 genetic
diversity in the nervous system: Evolutionary
epiphenomenon or disease determinant?
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Over the past decade there has been a revolution in the understanding and
care of human immunodeficiency virus/acquired immunodeficiency syndrome
(HIV/AIDS)-associated disease. Much of this progress stems from a broader
recognition of the importance of differences in viral types, including receptor
preference(s), replication properties, and reservoirs, as contributing factors to
immunosuppresion and disease progression. In contrast, there is limited con-
ceptualizatin of viral diversity and turnover in the brain and circulation in
relation to neurocognitive impairments. Herein, the authors review current
concepts regarding viral molecular diversity and phenotypes together with
features of HIV-1 neuroinvasion, neurotropism, neurovirulence, and neuro-
susceptiblity. Viral genetic and antigenic diversity is reduced within the brain
compared to blood or other systemic organs within individuals. Conversely,
viral molecular heterogeneity is greater in patients with HIV-associated demen-
tia compared to nondemented patients, depending on the viral gene examined.
Individual viral proteins exert multiple neuropathogenic effects, although the
neurological consequences of different viral polymorphisms remain uncertain.
Nonetheless, host genetic polymorphisms clearly influence neurological dis-
ease outcomes and likely dictate both acquired and innate immune responses,
which in turn shape viral evolution within the host. Emerging issues include
widespread antiretroviral therapy resistance and increasing awareness of
viral superinfections together with viral recombination, all of which are
likely to impact on both HIV genetic variation and neuropathogenesis. With
the increasing prevalence of HIV-induced neurocognitive disabilities, despite
marked improvements in managing immunosuppression, it remains impera-
tive to fully define and understand the mechanisms by which viral dynamics
and diversity contribute to neurological disease, permitting the development
of new therapeutic strategies. Journal of NeuroVirology (2005) 11, 107–128.
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Introduction

Retroviral infections frequently result in nervous sys-
tem disease (Patrick et al, 2002; Sanders et al, 2001),
but human immunodeficiency virus type 1 (HIV-1)
infection exhibits the broadest range of associated
neurological phenotypes. Autopsy studies show that
over 90% of patients dying with acquired immun-
odeficiency syndrome (AIDS) manifest some type
of neurological disease (Johnson, 1998). The broad
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Figure 1 The temporal interrelationships between HIV-1 sys-
temic disease progression, immunosuppression, viral diversity
and load, coreceptor preference, and primary neurological disease
occurrence. As viral diversity in blood increases with concurrent
immunosuppression, neurological disease develops (MCMD, mi-
nor cognitive motor disorder; HAD, HIV-associated dementia; DSP,
distal sensory polyneuropathy), and X4 viruses emerge.

spectrum of primary HIV-induced neurological dis-
eases affects both the peripheral (PNS) and cen-
tral nervous (CNS) systems (Figure 1) (Power et al,
2002). Because 15% of untreated AIDS-defined pa-
tients will develop frank dementia and another 25%
to 35% exhibit mild cognitive dysfunction, termed
HIV-associated dementia (HAD) and minor cognitive
and motor disorder (MCMD), respectively, the im-
pact of HIV-induced neurocognitive impairment is
substantial. Moreover, the onset of HAD heralds a
significantly worsened survival prognosis (McArthur
et al, 1993). Similarly, HIV-1– related peripheral neu-
ropathies may affect greater than 50% of treated pa-
tients (Keswani et al, 2002). Advancing immuno-
suppression and increased HIV-1 molecular diversity
within the host usually accompany the development
of neurological disease. The understanding of HIV-1
dynamics and evolution in relation to systemic dis-
ease has advanced markedly over the past decade,
with concomitant improved therapeutic strategies,
such as the availability of highly active antiretrovi-
ral therapy (HAART). In contrast, similar progress in
understanding nervous system infection by HIV-1 has
not been forthcoming despite the significant burden
of neurological disease. The limited understanding
of HIV neuropathogenesis primarily stems from the
complexity in diagnosing neurological disease, dy-
namic and codependent viral reservoirs within the
CNS, i.e., brain and cerebrospinal fluid (CSF), and a
dependence on autopsy studies with reliable clini-
cal assessment before death. Overall, studies suggest

that although incidence of HAD has dropped with
the advent of HAART, its prevalence is rising (Brew
and Dore, 2000; Dore et al, 1999; Neuenburg et al,
2002; Sacktor et al, 2002). An improved knowledge
of viral dynamics in the CNS would enhance insights
into HIV-induced neurological disease and perhaps
lead to more effective therapeutics, as shown for sys-
temic HIV-associated disease. It is important to appre-
ciate that systemic immune suppression per se does
not cause primary neurological disease despite its
proclivity for increasing susceptibility to opportunis-
tic infections. On the other hand, the development
of HIV-related neurological disease is closely corre-
lated with increasing immunosuppression and viral
diversity (Figure 1). Bearing in mind that activation
(and dysregulation) of innate immunity is increas-
ingly recognized as an important determining factor
of neurodegeneration (Holmes et al, 2003; Nguyen et
al, 2004), immunosuppression with subsequent sys-
temic intercurrent infections is also likely contribut-
ing to HIV-induced neurological disease. Virus pres-
ence in the brain is not sufficient for the development
of CNS disease as many studies show detectable virus
in the brains of patients without HAD who are pro-
foundly immune suppressed. The extent to which vi-
ral molecular and antigenic diversity participate in
HIV-1 neuropathogenesis is unclear. Herein, we re-
view the current understanding of viral dynamics in
the CNS together with the impact of viral diversity
on HIV neuropathogenesis.

Viral evolution and dynamics

Natural selection is usually assumed to improve
the fitness of an infectious agent over time, re-
flected in maximized reproductive capacity (Nowak
and Sigmund, 2004). Indeed, conventional evolu-
tionary thinking implies that host factors determine
the pathogen’s adaptations but it is also worth re-
membering that those same adaptations may also
influence the host’s fate(s). Paradoxically, increased
viral pathogenesis may actually reflect reduced vi-
ral fitness as it could diminish survival of the host,
and thereby limiting the virus’ ability to propa-
gate itself (DeFillipis and Villarreal, 2001). The two
principal processes by which the genetic composi-
tion of a viral population is regulated include se-
lection and random genetic drift. Selection is de-
fined as positive when fitter viral variants exhibit
increased frequency in a population whereas nega-
tive selection reflects eradication of the less fit vari-
ants from the population. Conventional assays of
viral fitness are usually predicated on comparing
replication properties using in vitro assays, but this
does not always reflect the in vivo circumstances.
In many neurovirological infections, enhanced virus
replication is associated with increased patho-
genesis (DeFillipis and Villarreal, 2001; Johnson,
1998).



HIV-1 diversity and neurological disease
G van Marle and C Power 109

HIV-1 is one of the fastest evolving organisms, in
large part due to (1) the high error rate of its re-
verse transcriptase (∼0.2 errors per genome for cy-
cle of replication); (2) extraordinary replication dy-
namics (∼1010 to 1012 viruses per day); (3) frequent
recombination; and (4) intense selection (reviewed
in Rambaut et al, 2004). The extent of HIV-1 ge-
netic diversity or heterogeneity within a host is cor-
related with the duration of infection because of
protracted immunological selection (Lukashov et al,
1995; Markham et al, 1998; Ross and Rodrigo, 2002;
Shankarappa et al, 1999), as part of the ongoing bat-
tle between the virus and the immune system. Viral
molecular diversity is often described as point mu-
tations manifested as nonsynonymous (amino acid
changing) or synonymous (non–amino acid chang-
ing) mutations, but also involves changes in nucleic
acid sequence as a result of insertions, deletions,
and recombination events within a viral population
or quasispecies. Ultimately these changes lead to
altered overall structure and function at the pro-
tein level, but also affect noncoding nucleic acid
sequences that are important for viral replication,
transcription, and translation. The term quasispecies
describes an error-prone self-replicating, -organizing,
and -adapting population of viral genomes, first de-
scribed in studies of molecular evolution of prim-
itive replicons (Eigen, 1971; Eigen and Biebricher,
1988). HIV-1 molecular and phenotypic diversity ex-
ists within host populations as well as within indi-
viduals, depending on the infected cell type or organ.
Phylogenetic tools, by which the degree of related-
ness and evolution among different viral sequences
can be inferred, permit insights into the complex
makeup of these viral populations or quasispecies.
These inferences are also invaluable for epidemio-
logical analyses (Gaschen et al, 2002; Korber et al,
2001).

The relative rate of nonsynonymous (dN) to syn-
onymous (dS) mutations reflects different selection
pressures with a ratio (dN/dS) of <1 indicating nega-
tive (purifying) selection whereas a ratio of >1 sug-
gests positive selection pressure and ratios approxi-
mating ≈1 point to random genetic drift (Overbaugh
and Bangham, 2001). Multiple factors including host
immune response, intrinsic properties of the virus,
and environmental factors influence selection pres-
sures (Domingo and Holland, 1999; Overbaugh and
Bangham, 2001). The consequences of increasing vi-
ral molecular diversity in HIV-1 consist of an en-
hanced ability to evade the immune system with en-
suing immunological exhaustion and a gain or loss
of select functions such as receptor binding or repli-
cation competence (Coffin, 1995). HIV-1 dynamics
and phenotypes outside of the CNS are characterized
by high levels of replication, depending on the in-
dividual virus strain, infected cell types and organs,
coreceptor preference, susceptibility to immune in-
activation and selective activation of both innate and
acquired immune mechanisms with accompanying

cytopathogenicity. Aside from obvious viral quali-
ties that distinguish individual viral strains, includ-
ing coreceptor(s) utilization, cell and organ tropism,
and pathogenesis (Khanna et al, 2000; Kreisberg et al,
2001; Schramm et al, 2000; Voulgaropoulou et al,
1999), it is also evident that at the level of whole hu-
man populations, different HIV-1 subtypes or clades
may vary in their ability to cause disease (Kanki
et al, 1999). However, the prime example of HIV ge-
netic diversity influencing disease outcome lies in
the emergence of drug resistant viruses. Distinct mu-
tations within the protease and reverse transcriptase
sequences lead to drug failure and resulting disease
progression (Richman, 2001). As HIV-1 infection pro-
gresses over time, viral molecular diversity expands
with immunosuppression. In addition, increased vi-
ral diversity at the onset of infection may predict a
higher viral load set point and accelerated disease
progression (Lavreys et al, 2002; Neilson et al, 1999).
Thus, the collision of a highly diverse and dynamic
viral population with a large and genetically outbred
species such as humans lends itself to the emergence
of new and potentially more virulent viral variants.

Neuroinvasion, neurotropism, and
neurovirulence

HIV-1 infects cells of the brain during primary in-
fection (Bell et al, 1993; Davis et al, 1992), termed
neuroinvasion. Although HIV-1 is inherently neu-
rotropic, i.e., able to infect and replicate in cells of
the nervous system, not all HIV/AIDS patient will
develop neurological disease, indicating that HIV-1
is not always neurovirulent, i.e., able to cause neu-
rological disease. This raises the intriguing ques-
tion of what factors influence the heterogeneity of
clinical presentation and underlying neuropathogen-
esis of HIV-1–associated neurological disease. The
obvious determinants include the virus’ intrinsic
pathogenic properties and the neurosusceptibility of
the infected individual, i.e., genetic background and
age (Corder et al, 1998; Gonzalez et al, 2002; Janssen
et al, 1992; Quasney et al, 2001; van Rij et al, 1999).
The level of immunosuppression caused by HIV-1 is
also an integral determinant of the development of
CNS disease (Figure 1). HIV-1 belongs to the genus
of lentiviruses, all of which cause neurological dis-
ease (Patrick et al, 2002). Simian (SIV), feline (FIV),
and bovine (BIV) immunodeficiency viruses, but also
the non–immune-suppressing animal lentiviruses,
such as caprine arthritis encephalitis virus (CAEV),
maedi-visna virus (MVV), and equine infectious ane-
mia virus (EIAV) cause CNS disease (reviewed in
Patrick et al, 2002). In addition to HIV-1, HIV type
2 (HIV-2) has been shown to infect the brain with
subsequent development of neurological disorders,
but its neuropathogenic mechanisms remain largely
unknown (Lucas et al, 1993; Sankale et al, 1996). The
disease pattern characterizing lentiviral infections
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generally consists of acute primary infection, which
elicits an intense immune response, followed by a
long period of asymptomatic infection and in the fi-
nal stages of disease defined by immune suppres-
sion or immune activation, depending on the virus
(Clements and Zink, 1996). HIV-1–, FIV-, and SIV-
associated neurological diseases predominantly oc-
cur during advanced systemic immunosuppression
but also hasten the host’s demise, irrespective of the
level of immune suppression (McArthur et al, 1993;
Narayan et al, 1995; Patrick et al, 2002). Like other im-
munodeficiency lentiviruses, including SIV and FIV,
HIV-1 appears in the nervous system early after in-
fection (Davis et al, 1992; Poli et al, 1999; Sasseville
and Lackner, 1997). The mechanism by which HIV-1
crosses the blood-brain barrier (BBB) is unclear. Sev-
eral potential routes have been proposed and include
direct infection of endothelial cells and subsequent
release of virus into the brain, transcytosis of virions
across brain endothelial cells, trafficking of infected
cells (monocytes as well as lymphocytes) from the pe-
riphery into the nervous system, or disruption of the
BBB or blood–cerebrospinal fluid barrier (B-CSF-B) at
the level of the choroid plexus (reviewed in Strelow
et al, 2001). Viral sequence diversity is lower in the
brain compared to blood or other organs, as measured
by the relative number of nonsynonymous mutations,
whereas CSF displays intermediate levels of diver-
sity (Wong et al, 1997). The dN/dS ratio in brain is
also lower, likely due to fewer immunological con-
straints on viral replication in the brain because of
(1) its immune privileged nature with absent lym-
phatics or lymphoid tissue to support viral replica-
tion, together with (2) lower permissiveness of brain
cells to HIV-1 infection, perhaps due to low CD4 ex-
pression. In fact, these conditions suggest that a bot-
tleneck for viral replication occurs in the brain and
only specific viral strains cross the BBB and subse-
quently infect the CNS.

Neurotropism, the ability to infect the nervous sys-
tem, is determined in part by the individual cell
types’ permissiveness to viral binding, entry, and
replication together with the specific strain of infect-
ing virus. Cells infected by HIV-1 in the brain are pri-
marily microglia, perivascular macrophages, and to
a lower degree astrocytes (Bagasra et al, 1996; Nuovo
et al, 1994; Torres-Munoz et al, 2001; Trillo-Pazos
et al, 2002). The invading/perivascular macrophage
and to a lesser extent the resident microglia are con-
sidered the principal sites for active lentivirus repli-
cation in the brain (reviewed in Clements and Zink,
1996; Lipton and Gendelman, 1995). This is com-
plemented by the formation of multinucleated gi-
ant cells, which express abundant viral antigen and
are the neuropathological hallmark of HIV-1 infec-
tion, representing HIV encephalitis (HIVE) (Wiley,
1995). Astrocytes are permissive to infection but lim-
ited to early virus gene expression with minimal vi-
ral replication and release (Gorry et al, 1999; Mes-
sam and Major, 2000; Neumann et al, 1995; Tornatore

et al, 1991, 1994). To what extent direct infection of
neurons (neuronotropism) plays a role in HIV-1 neu-
ropathogenesis is unknown and remains controver-
sial (Bagasra et al, 1996; Nuovo et al, 1994; Torres-
Munoz et al, 2001; Trillo-Pazos et al, 2002).

In phylogenetic analyses of HIV-1, viral sequences
cluster together by organ and vary with duration of
disease (Ball et al, 1994), whereas in the CNS, brain
parenchyma and CSF constitute overlapping reser-
voirs (Bratanich et al, 1998; Chang et al, 1998; Shap-
shak et al, 1999; Wong et al, 1997). In addition, the
brain may be further compartmentalized as viral en-
velope sequences cluster by individual anatomical
region (Chang et al, 1998; Liu et al, 2000; Shapshak
et al, 1999). In patients with encephalitis, evidence of
compartmentalization may be obscured in phyloge-
netic analyses (Gatanaga et al, 1999; Hughes et al,
1997; Wang et al, 2001). Some groups have also
proposed that distinct brain-specific “signature” se-
quences can be defined (Korber et al, 1994) with a pre-
dominance of nonsyncytia-inducing viruses (van’t
Wout et al, 1998). Comparisons of brain- and spleen-
derived envelope sequences from different HIV-1
clades show that the rate of nonsynonymous mu-
tations (dN) varied among individual clades, which
was also dependent on the individual envelope do-
main (Zhang et al, 2001). However, purifying (or neg-
ative) selection was significantly greater in the brain-
derived compared to spleen-derived sequences,
reflecting the constraints on viral replication in the
brain, as mentioned earlier.

Entry and infection of the nervous system are not
the sole determinants of neurological disease or neu-
rovirulence. The inflammatory responses elicited by
the infected cells as well as the activation and dys-
regulation of bystander microglia and astrocytes are
considered key factors in HIV-1 neurological disease
development (Kaul et al, 2001; Mollace et al, 2001;
Wesselingh and Thompson, 2001). HIV-1, SIV, and
FIV neuropathogenesis is characterized by direct and
indirect activation of innate immune responses in
the CNS with ensuing neuronal degeneration and
death (Kaul et al, 2001). In HIV-induced neurological
disease, the activation of innate immune responses
in the CNS manifests itself as upregulation of cy-
tokines, chemokines, and matrix metalloproteases
(MMPs). The increase in proinflammatory molecules
following infection may recruit additional inflamma-
tory macrophage cells into the nervous system (Klein
et al, 1999; Lane et al, 1996; Sanders et al, 2001;
Sasseville et al, 1996), whereas both cytokines and
chemokines through interactions with their cognate
receptors present on astrocytes and neurons also have
toxic effects on these cell types or result in the release
of molecules with a neurotoxic action (Gabuzda and
Wang, 2000; Klein et al, 1999; Zheng et al, 1999).
Moreover, infection by HIV-1 or exposure to its gene
products results in the release of other neurotoxic
molecules by macrophages, microglia, and astrocytes
(Kaul et al, 2001; Mollace et al, 2001; Wesselingh
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Figure 2 Schematic representation of the impact of the different HIV-1 genes and regions identified in relation to HIV-1 neurovirulence.
The HIV-1 genome is indicated as proviral DNA. The 2 exons making up the spliced Tat and Rev genes have been indicated as Tat1-Tat2
and Rev1-Rev2, respectively. The pathogenic effects for each gene expressed in the brain are highlighted.

and Thompson, 2001; Zhang et al, 2003b). The dif-
ferent neuropathogenic mechanisms appear to de-
pend on individual viral genes (Figure 2). For exam-
ple, HIV-1 Tat induces p53-mediated neuronal death
(Silva et al, 2003). Conversely, the HIV-1 envelope
protein triggers a highly novel pathogenic cascade, in
which an MMP cleaves the chemokine, stromal cell–
derived factor-1 (SDF-1), yielding a highly neurotoxic
molecule that causes neuronal apoptosis (Zhang et al,
2003a). Other molecular pathways also impact on
lentiviral neurovirulence, including elevated nitric
oxide metabolites (i.e., peroxynitrite), altered trypto-
phan metabolism, and activation of arachidonic acid
metabolism (Garden, 2002), whereas up-regulation
of neuronal cell cycle regulators and deregulation
of differentiation factors may also impair neuronal
survival and function (Jordan-Sciutto et al, 2000; Pe-
ruzzi et al, 2002). Ultimately, each of the above mech-
anisms is driven by the presence of virus in the brain
and stochastic events dictated by the interaction(s)
between a particular viral protein and a host cellular
pathway.

The individual host’s neurosusceptibility is also
an important disease determinant in lentivirus infec-
tions, similar to other infectious diseases in which
age and genetic polymorphisms confer vulnerability
to neurological disease (Clements and Zink, 1996;
Dean et al, 2002; O’Brien and Moore, 2000; Patrick
et al, 2002). For example, SIV infection of nonhu-
man African primates occurs naturally and is non-

pathogenic (reviewed in Clements and Zink, 1996;
Johnson, 1998; Sanders et al, 2001) despite high lev-
els of virus in the brain. During cross-species trans-
mission to Asian macaques, not normally infected
with SIV, SIV induces simian AIDS and encephali-
tis. Host genetic studies in humans have identified
polymorphisms in genes that are associated with the
onset of AIDS or its progression (Berger et al, 1999;
Dean et al, 2002), including the development of HIV-
1 neurologic disease. The host neurosusceptibility
genes with polymorphisms identified in relation to
HIV-associated dementia include the chemokine re-
ceptor CCR5 and potentially pathogenic molecules
such as apolipoprotein E (APOE), tumor necrosis
factor-α (TNF-α), SDF-1, and monocyte chemoattrac-
tant protein-1 (MCP-1) (Corder et al, 1998; Gonzalez
et al, 2002; Quasney et al, 2001; Sei et al, 2001; van
Rij et al, 1999). It is likely that more polymorphisms
in host immune genes will be identified as risk factors
for HIV-induced neurological diseases in the future.
Such genetic variations in the host may also mod-
ify responses to individual HIV-1 genes, which have
been reviewed elsewhere (Carrington et al, 1999a;
Dean et al, 2002; O’Brien and Moore, 2000).

HIV-1 gene products and neuropathogenesis
Several viral gene products have been implicated in
HIV-1 neurovirulence (Figure 2). The most promi-
nently studied both with regard to pathogenic mecha-
nism and sequence variability, are the HIV-1 envelope
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and Tat (transactivator of transcription) proteins and
will be discussed in more detail below. The Nef (Neg-
ative factor) protein, and more recently, the auxil-
iary viral protein R (Vpr) have been demonstrated to
contribute to neuropathogenesis (Brack-Werner et al,
1992; Patel et al, 2000, 2002; Ranki et al, 1995; Saito
et al, 1994; Speth et al, 2002), although in contrast to
HIV-1 Tat and envelope, molecular diversity in Nef
did not differ in blood from HIV/AIDS patients with
and without HAD (van Marle et al, 2004). Likewise
the Gag/Pol region and the noncoding long termi-
nal repeat (LTR) sequences have also been implicated
in development of neurological disease (Ait-Khaled
et al, 1995; Corboy et al, 1992; Corboy and Garl, 1997;
Huang et al, 2002; Ross et al, 2001). However, to date
little is known about the neuropathogenic effects re-
sulting from molecular diversity in these viral gene
products. Although the direct contribution of indi-
vidual viral proteins to pathogenesis of HIV-1 asso-
ciated neurological disease remains uncertain, it is
increasingly appreciated that each contributes to cell
tropism and neurotropism, which ultimately influ-
ences neurovirulence, as discussed below.

HIV-1 envelope protein
The HIV-1 envelope glycoprotein is responsible for
viral binding and entry into the cell. Apart from
using CD4 as primary receptor, HIV-1 also requires
chemokine receptors as coreceptors (reviewed in
Berger et al, 1999). HIV-1 predominantly uses the
CXCR4 or CCR5 receptors as coreceptor, but the use
of several other chemokine receptors has also been re-
ported (Choe et al, 1996; Doranz et al, 1996; Hoffman
et al, 1998). Viruses that exclusively use CCR5 (R5)
are largely macrophage tropic strains and those that
use CXCR4 exclusively (X4) are largely lymphotropic
strains and emerge late in the course of disease. Viral
strains that are able to use both receptors have been
isolated and termed as X4R5 or dual tropic strains
(Berger et al, 1999; Collman et al, 1992; Doranz et al,
1996). In the case of each coreceptors, the HIV-1 en-
velope protein’s sequence dictates the affinity with
which it binds to the receptor (Berger et al, 1999).
Amino acid residue changes in the envelope protein
can change the tropism of HIV-1 by changing corecep-
tor use (Cho et al, 1998; Hoffman et al, 1998; Speck
et al, 1997; Wang et al, 1999).

In the brain, macrophage tropism and use of CCR5
as a coreceptor for viral entry appear to be piv-
otal prerequisites for infection (Albright et al, 1999;
Chan et al, 1999; Gorry et al, 2001; Reddy et al,
1996). The majority of the viruses found in the brain
use CCR5 for viral entry. In some cases, CCR3 par-
ticipates in the infection of microglia (He et al,
1997). Cells of macrophage/microglial lineage ex-
press CCR5, CXCR4 and CCR3 (Albright et al, 1999;
He et al, 1997). Although astrocytes do not express
CD4, they express both CXCR4 and CCR5 (Flynn et al,
2003). The infection of astrocytes is not efficient and,
perhaps due to a block in Rev function, results in

the expression of early viral gene products such as
Tat and Nef (Gorry et al, 1999; Messam and Major,
2000; Neumann et al, 1995; Tornatore et al, 1994).
X4-dependent viruses and dual tropic (X4R5) viruses
are infrequently found in the brain (Chan et al, 1999;
Gorry et al, 2001; Reddy et al, 1996), despite re-
ports of their ability to cause neuronal injury (Buch
et al, 2000; Ohagen et al, 1999; Yi et al, 2003). It has
been reported that certain brain-derived viruses ap-
pear to have a higher affinity for CCR5, making them
less dependent on high levels of CD4 for infection
(Gorry et al, 2002; Martin et al, 2001; Shieh et al,
2000). Brain-derived HIV-1 envelope sequences from
patients with HAD exhibit higher sequence diversity
(Figure 3A), reflected in a trend towards random ge-
netic drift, compared to brain-derived viral sequences

Figure 3 (A) Total DNA distance displayed by phylogenetic
neighbor-joining tree (Jukes-Cantor correction), based on the
blood-derived consensus envelope (V3 region) sequences obtained
from AIDS patients with neurocognitive impairment (HAD or
MCMD) or nondemented (ND) patients, rooted to the V3 envelope
sequence of the HIV-1 D clade virus strain NDK. The more extended
branches for the HAD/MCMD patients compared to ND patients
indicate higher viral diversity among sequences obtained from
HAD/MCMD patients, reflecting differences in selection pressures
acting on this region for each patient group. (B) The differences in
selection pressure is reflected in a higher ratio of nonsynonymous
(i.e., amino acid changing) over synonymous (i.e., non–amino acid
changing) nucleotide substitutions (dN/dS), which were the most
evident for the blood-derived sequences from HAD patients. A
dN/dS larger than 1 indicates a replicating nucleic acid sequence is
under positive selection pressure. ∗ P < .05; ∗∗∗ P < .001. Adapted
from van Marle et al 2002.
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from AIDS patients without dementia, which exhib-
ited purifying selection (dN/dS< 1) (van Marle et al,
2002) (Figure 3B). Blood-derived envelope sequences
exhibited different profiles among clinical groups,
with HAD patients having a higher dN/dS values (>1)
compared to nondemented (ND) patients (dN/dS ≈ 1),
despite matched levels and durations of HIV infec-
tion and systemic immunosuppression (van Marle
et al, 2002). Of particular interest was the finding that
the dN value for the envelope protein V3 loop derived
from blood was highly correlated with presence or
absence of HAD (van Marle and Power, unpublished
results) (Figure 4A). These latter observations may
point to immunological failure to curtail viral repli-
cation in blood in late stages of disease among pa-
tients with HAD, but also suggest the relative selec-
tion pressures that influence virus evolution in brain
and blood differ.

Apart from influencing viral entry and spread,
lentivirus envelope proteins influence neuropatho-
genesis by other mechanisms. The interaction of the
HIV-1 and FIV envelope protein with chemokine
receptors has been shown to initiate signaling

Figure 4 (A) A higher number of nonsynonymous, i.e., amino acid
changing nucleotide substitutions (dN) observed for HAD/MCMD
compared to nondemented (ND) HIV-infected patients for blood-
derived sequences, which was correlated with the severity of neu-
rological impairment, represented by the mean deficit score (MDS).
Moreover, a dN value for the V3 region > 0.1 (indicated by the
dashed line) was predictive of HAD whereas a dN < 0.1 was pre-
dictive for a nondemented neurological status (sensitivity = 88%,
specificity = 81%; P < .001, Fisher’s Exact test). (B) Viral neutral-
ization by sera obtained from demented (HAD n = 15) and nonde-
mented (ND n = 21) AIDS patients. R5 strains were consistently
neutralized less efficiently by sera from HAD patients, whereas no
difference in neutralization between the two patients groups was
observed for X4 strains. Adapted from van Marle et al (2002) and
unpublished data.

events, such as the signal transducer and activator
of transcription (STAT)/Janus kinase (JAK) pathway
(Shrikant et al, 1996), in an envelope sequence–
dependent manner (Johnston et al, 2000). Activation
of this pathway in monocytoid cells induces neu-
ronal death directly and indirectly by eliciting the
release of molecules with neurotoxic actions in both
infected and uninfected cells (Johnston et al, 2000;
Martin-Garcia et al, 2002). Indeed, envelope molec-
ular diversity appears to drive activation of MMP-2,
which in turn cleaves SDF-1 to a neurotoxic form
(Zhang et al, 2003a). The full-length envelope pro-
tein gp160 and the processed forms gp120 or surface
unit (SU) and gp41, containing the transmembrane
region, have been reported to induce neuronal death
directly and indirectly by inducing the release
of neurotoxic molecules (Adamson et al, 1996,
1999; Barks et al, 1997; Berrada et al, 1995; Dreyer
et al, 1990; Gemma et al, 2000; Kaiser et al, 1990).
Recombinant SIV gp120 induces a calcium flux in
cultured macaque neurons that could be blocked
by treatment with the CCR5 chemokine RANTES,
suggesting that interactions of the envelope protein
with CCR5 may initiate an intracellular cascade that
results in neuronal death (Klein et al, 1999). The
FIV envelope protein also causes neuronal injury
through an excitotoxic mechanism as exposure of
neuronal cultures to neurovirulent FIV particles or
purified FIV envelope proteins results in increased
calcium signaling that is dependent on glutamate
(Gruol et al, 1998). Sequence differences in the
viral envelope distinguish neurovirulent and non-
neurovirulent FIV isolates by modulating the activity
of intracellular signaling pathways, thereby altering
the expression of host molecules including MMPs,
which mediate neuronal injury (Johnston et al,
2002b, 2001; Yong et al, 1998). The precise nature of
the interaction(s) between the recombinant envelope
proteins with cell surfaces remains uncertain since
these proteins exist as monomers while infection is
dependent on trimer formation (Berger et al, 1999).

With regard to the impact of HIV-1 envelope
sequence variability on neuronal survival, brain-
derived envelope protein sequences derived from pa-
tients with HAD, which differed at several amino acid
positions from sequences derived from the brains of
ND patients, also caused significantly more neuronal
death when expressed in infectious recombinant
viruses for neurotoxicity assays (Power et al, 1998b).
These sequences differed between patient groups
chiefly within and near the V3 region, which is also
an important determinant of calcium-mediated neu-
rodegeneration (Pattarini et al, 1998). Of interest,
several investigators have also reported differences
in the envelope sequences and biological properties
of viruses isolated from brains of patients with and
without HAD (Smit et al, 2001; Smith et al, 2000)
Other studies have reported differences in the ability
to induce TNF-α synthesis by different HIV-1 strains
that mapped to the V3 envelope region and may
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account for the differences in systemic disease course
observed among patients (Khanna et al, 2000). Viral
isolates from brain also selectively activate a neu-
rotoxic pathway involving tryptophan metabolism
(Burudi et al, 2002; Grant et al, 2000). In addi-
tion, envelope proteins from different HIV-1 strains
have been shown to differentially induce cell signal-
ing pathways through chemokine receptors such as
CCR5, which not only influences viral replication but
may also impact on systemic HIV-1 pathogenesis by
altering cellular function (reviewed in Kinter et al,
2000). Furthermore, recombinant HIV-1 gp120s from
different viral strains differed in their ability to ac-
tivate calcium signaling in CD4-negative epithelial
cells, underscoring the importance of sequence diver-
sity in modulating cell function (Clayton et al, 2001).
Indeed, recent studies from our laboratory indicate
that both replication-competent and -incompetent
viruses encoding brain-derived C2V3 sequences from
multiple HIV-1 clades differed in their ability to in-
duce neuronal death directly or indirectly through
activation of macrophages (Zhang et al, 2003b). These
latter observations were associated with cytokine in-
duction that was mediated by a non–CCR5-driven
signaling cascade that varied depending on the virus
envelope sequence. These observations emphasize
the importance of HIV-1 envelope variability in
pathogenic outcomes.

It has been consistently demonstrated for murine
leukemia retrovirus (MuLV)-associated infections
that mutations within the envelope protein con-
tribute to neurovirulence (Hasenkrug et al, 1996;
Peterson et al, 2001; Poulsen et al, 1998; Robertson
et al, 1997). However, these mutations did not influ-
ence pathogenesis by changing cell tropism or lev-
els of infection (Hasenkrug et al, 1996; Poulsen et al,
1998, 1999, Robertson et al, 1997) but rather by al-
tering the induced inflammatory responses (Peterson
et al, 2001). Although the interaction of the envelope
protein with its cognate receptors and subsequent ac-
tivation of cell signaling pathways with ensuing re-
lease of neurotoxins may be a major mechanism by
which the envelope contributes to pathology in the
brain (reviewed in Martin-Garcia et al, 2002), alter-
native envelope-mediated mechanisms may also par-
ticipate in neuropathogenesis. Differences in MuLV
neurovirulence have been associated with abnormal
intercellular expression of the envelope protein in
microglia due to specific mutations (Kamps et al,
1991; Lynch et al, 1995; Lynch and Sharpe, 2000). The
potential underlying cellular mechanisms include
misfolding or an altered expression pattern of the en-
velope protein within the endoplasmic reticulum as
a consequence of individual mutations, leading to a
stress response that results in the release of neurotox-
ins, as suggested for studies of misfolded proteins in
other neurodegenerative diseases (Soto, 2003). The
release of cytokines, chemokines, arachidonic acid
metabolites, and reactive oxygen species observed in
HIV infection by microglia and astrocytes are con-

sidered stress responses (Wesselingh and Thomp-
son, 2001). Similar mechanisms may play a role in
HIV envelope–associated neuropathogenesis, as as-
trocytes expressing, but apparently not releasing, de-
tectable amounts of the HIV-1 envelope protein are a
potent source of neurotoxins (van Marle et al, 2003).

HIV-1 Tat protein
The HIV-1 regulatory protein Tat is chiefly recognized
for its regulation of viral transcription (Freed and
Martin, 2001). In addition, Tat has a potent immuno-
suppressive action, inhibits T-cell proliferation in re-
sponse to antigen stimulation and may block CXCR4
(Ghezzi et al, 2000; Viscidi et al, 1989; Xiao et al,
2000; Zagury et al, 1998). Many studies of Tat’s ef-
fects on host neuroimmune activation and associated
signaling pathways support a role for Tat in HIV-
1 neuropathogenesis (Rappaport et al, 1999). Fol-
lowing infection, Tat is produced by macrophages
and microglia, in addition to astrocytes (Nath, 2002).
Tat has also been shown to be taken up by neu-
rons and translocated to the nucleus rapidly in vitro
and in vivo (Fawell et al, 1994; Kolson et al, 1994).
Intracerebral injection of the complete Tat protein
results in inflammation, microglial and astrocyte
activation, macrophage invasion, and neuronal de-
generation (Jones et al, 1998; Philippon et al, 1994).
These pathogenic features have been attributed to the
ability of Tat to directly or indirectly induce apop-
tosis, cytokines, chemokines, and MMPs, disturb-
ing the glutamate and calcium homeostasis (Cheng
et al, 1998; Johnston et al, 2001; Nath et al, 1996;
Philippon et al, 1994; Rappaport et al, 1999). The
up-regulation of cytokines, including TNF-α and in-
terleukin (IL)-1β, are linked to an increase of cell
adhesion molecule expression on endothelial cells
(Lafrenie et al, 1996; Nottet et al, 1996; Rappaport
et al, 1999). Up-regulation of the chemokine MCP-1
by HIV-1 Tat (Conant et al, 1998) may facilitate in-
flammatory cell invasion of the brain, and contribute
to the loss of BBB integrity observed late in disease
(Berger et al, 2000; Power et al, 1993; Shi et al, 1996).
The effects of Tat in many studies have been asso-
ciated with high levels of exogenously supplied Tat.
In the human brain, Tat transcripts are readily de-
tectable, but extracellular Tat protein has not been
detected to date (Hudson et al, 2000). High turnover
rates for the Tat protein as well as other HIV-1 proteins
may account for this discrepancy (Nath et al, 1999).

Phylogenetic analysis of Tat sequences from pa-
tients with and without HAD revealed clustering
of sequences by diagnosis and tissue of origin
(Bratanich et al, 1998; Mayne et al, 1998). Simi-
lar to brain-derived envelope sequences for AIDS
patients with and without dementia, the extent of
molecular diversity in Tat was greater among pa-
tients with dementia with evidence of purifying
selection again acting on Tat sequences for nonde-
mented patients (Bratanich et al, 1998). Sequence
variation within specific domains of the Tat protein
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has been associated with higher viral replication
levels and TNF-α production (Chiao et al, 2001;
Mayne et al, 1998; Munoz-Fernandez et al, 1997;
Westendorp et al, 1995); interestingly, brain-derived
Tat sequences derived from patients with HAD were
more diverse in these regions (Mayne et al, 1998).
Moreover, brain-derived Tat sequences from HAD pa-
tients have been shown to induce significantly more
neuronal death in vitro and in vivo compared to Tat
from nondemented HIV/AIDS patients, which was
in part mediated by enhanced MMP-2 expression
(Johnston et al, 2001). However, these same Tat se-
quences displayed minimal activation of viral tran-
scription despite their ability to activate host gene
expression (Silva et al, 2003). Collectively, these ob-
servations support the notion that Tat sequence vari-
ability also contributes to HIV-1 neurovirulence
through differential effects on cellular responses.

HIV-1 Gag/Pol region
The HIV-1 polymerase (Pol) region of the Gag/Pol
encodes for the integrase (IN), reverse transcriptase
(RT), and viral protease (PRO), which are incorpo-
rated in the viral capsid (Freed and Martin, 2001). RT
and IN catalyze the viral reverse transcription and in-
tegration steps whereas PRO is essential for Gag/Pol
polyprotein proteolytic processing and viral capsid
maturation. A recent study indicates that the RT se-
quences found in the CNS appear to be under a pos-
itive selection pressure compared to other tissues,
which was influenced to some extent by HAART
(Huang et al, 2002). Structural analysis indicated that
the mutations found in the RT sequences were lo-
cated within regions important for protein and struc-
ture and function. The distinct nature of the RT se-
quences might suggest a specialized RT for the brain,
which is complemented by the observations that drug
resistance mutations found in CNS viral sequences
differ from those found in matched blood-derived
viral sequences (Wong et al, 1997). Indeed, cluster-
ing of Gag/Pol sequences by tissue compartment, and
the higher number of amino acid changing substitu-
tions observed in brain- and CSF-derived sequences,
when compared to blood-derived sequences (Huang
et al, 2002; Lanier et al, 2001; Morris et al, 1999;
Venturi et al, 2000; Wong et al, 1997) implies in-
creased “neuro-adaptation,” which could influence
neurotropism and ultimately neurovirulence. Con-
versely, RT sequences from HAD and nondemented
HIV/AIDS patients did not show differences in se-
quence diversity or phylogenetic clustering by clin-
ical group (Bratanich et al, 1998). The relationship
between drug resistance mutations in reverse tran-
scriptase and protease and the subsequent devel-
opment of neurological disease remains ill-defined,
but patients in whom systemic antiretroviral resis-
tance occurs are at greater risk of primary (and sec-
ondary opportunistic) neurological disease (Power
and Johnson, 2001).

HIV-1 LTR
The HIV-1 LTR is a repeat region of approximately
600 bp in length located at the 5′ and 3′ ends of the
integrated proviral DNA (Freed and Martin, 2001).
Within the proviral DNA, the LTRs act as promot-
ers and polyadenylation signal for viral transcrip-
tion by the host cell RNA polymerase (Freed and
Martin, 2001). Variations in the LTR sequence can
determine retroviral gene expression and the produc-
tion of progeny virus. The impact of LTR sequence
diversity on pathogenesis is evidenced by the dif-
ferences in replication and transcriptional activity
of LTRs from different HIV-1 clades that may cor-
relate with the differences observed in pathogenic-
ity among these clades (Jeeninga et al, 2000; Kanki
et al, 1999). The lower transcriptional activation of
the HIV-2 LTR by TNF-α compared to HIV-1, has
been suggested to be one of the reasons HIV-2 is less
pathogenic than HIV-1 (Hannibal et al, 1993). Sev-
eral LTR polymorphisms have been observed, but
their influence on systemic pathogenesis is contro-
versial (Chen et al, 2000; Estable et al, 1996, 1998;
Hiebenthal-Millow and Kirchhoff, 2002; Koken et al,
1992).

The distinct differences in HIV-1 LTR sequences be-
tween different tissue compartments, including the
brain, suggest an important role for the LTR in HIV-
1 tissue tropism and adaptation (Ait-Khaled et al,
1995; Corboy and Garl, 1997). This concept is high-
lighted by a study with transgenic mice containing
a β-galactosidase gene driven by blood- or brain-
derived LTRs (Corboy et al, 1992). Expression of the
transgene in the brain was observed only with the
brain-derived LTRs. Moreover, there also appeared to
be subtle differences in locations of gene expression
mediated by different brain LTRs. Differences in the
LTR of MVV have also been shown to influence neural
cytotropism (Agnarsdottir et al, 2000; Andresdottir
et al, 1998). Evidence for functional differences of
brain-derived HIV-1 LTRs comes from a study by Ross
et al (2001) examining the effects of mutations in two
CAAT/enhancer binding protein (C/EBP) sites in the
HIV-1 LTR. These two transcription factor binding
sites are considered important for viral replication
and transcription in cells of macrophage/microglial
lineage (Henderson et al, 1995, 1996; Schwartz et al,
2000), which is the principal cell type infected in the
brain. Within brain-derived LTRs, there was a ten-
dency for particular C/EBP binding sites to preferen-
tially bind more C/EBP factors. These differences in
LTR sequences were also correlated with differences
in Tat-dependent and -independent transcription ac-
tivation (Hogan et al, 2002; Ross et al, 2001). The lat-
ter observation suggests a coevolution of Tat and the
LTR. A direct link between this transcription factor
binding site and HAD has not been established, but
recent observations emphasize that LTR differences
not only contribute to HIV-1 neurotropism but also
appear to be associated with neurological disease de-
velopment (Hogan et al, 2003).
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Immune selection and viral diversity
in the CNS

Molecular heterogeneity among viral isolates con-
sisting of overall viral diversity and specific muta-
tions within individual genes can dramatically in-
fluence viral pathogenesis (Domingo and Holland,
1999). Given that host immune competence is a key
determinant of HIV-1 molecular diversity and sys-
temic pathogenesis, differences in humoral and cel-
lular immune responses select for or against viruses
that infect the brain and cause neurological damage.
Because the viruses present in the brain are likely
generated in the blood and then cross the BBB, dif-
ferences in neutralization ability of antibodies in the
serum could influence sequence variability of the
HIV-1 in blood and determine which viruses infect
the brain. Studies from several groups have estab-
lished a link between lower efficiency in HIV-1 neu-
tralization and non-neurological disease progression
(Carotenuto et al, 1998; Cecilia et al, 1999; Liu et al,
1997; Loomis-Price et al, 1998; Pilgrim et al, 1997).
Differences in immune responses to and neutraliza-
tion sensitivity of CCR5- and CXCR4-using HIV-1
strains have also been postulated (Trkola et al, 1998;
Wodarz and Nowak, 1999). A humoral immune re-
sponse directed primarily against X4 viruses with
less impact on R5 viruses would result in a pre-
dominance of the R5 phenotype with greater poten-
tial to infect the brain (Wodarz and Nowak, 1999).
This phenomenon might arise due to increased im-
mune tolerance to R5-dependent viruses, because
they have been present since the onset of infec-
tion in latent reservoirs in the body (Pierson et al,
2000).

Differences in viral neutralization between sera
from HIV/AIDS patients with and without neurolog-
ical disease have also been reported (Beilke et al,
1991). Indeed, neutralization ability of sera differs
in patients with and without HAD that is depen-
dent on virus coreceptor preference and perhaps
molecular or antigenic diversity (van Marle et al,
2002) (Figures 3 and 4). R5-dependent but not X4-
dependent viruses were less efficiently neutralized
by sera from patients with HAD compared to matched
nondemented HIV/AIDS patients, which was depen-
dent on the C2V3 envelope region of the HIV-1 en-
velope (Figure 4B). Of interest, the C2V3 sequences
amplified from the same blood samples exhibited
greater sequence diversity among patients with HAD
versus nondemented patients, with greater diversity
among the HAD patients. Furthermore, the obser-
vations that neurotropic (and neurovirulent) HIV-1
strains have increased affinity for CCR5 and are more
sensitive to neutralization by antibodies underscores
our observations (Gorry et al, 2002; Martin et al, 2001;
Song et al, 2004). Less efficient neutralization of R5-
dependent viruses in HIV-1 patients would give po-
tentially neurovirulent R5 strains a better chance of
escaping into the immune privileged milieu of the

brain than in patients with an efficient virus neutral-
ization antibody response.

In addition to differences in the humoral immune
response, cellular immunity may also play an im-
portant role in the development of HAD. The cellu-
lar immune response in HIV-1 infection is directed
against the envelope, Gag, Pol, Tat, Nef, Rev, Vif, and
Vpr proteins, whereas Vpu is infrequently recognized
by cytotoxic lymphocytes (CTLs) (Addo et al, 2002;
Altfeld et al, 2001; Walker and Goulder, 2000). Many
observations suggest a role for CTL escape by HIV-
1 and SIV in systemic disease progression (Barouch
et al, 2002; Carrington et al, 1999b; Evans et al,
1999; Goulder et al, 2001; Goulder and Walker, 1999;
McMichael and Rowland-Jones, 2001). Although lim-
ited evidence exists for CTL participation in HIV-
1 neuropathogenesis, there are data to suggest that
CTLs are present in the CSF early in infection fol-
lowing SIV infection (von Herrath et al, 1995). Infil-
tration of the brain by CTLs in SIV-infected Rhesus
macaques may also accelerate the onset of encephali-
tis (Marcondes et al, 2001). However, in a murine
model of HIV-1 encephalitis, CTLs may directly par-
ticipate in viral clearance from the brain (Poluek-
tova et al, 2002), which is supported by the obser-
vation that depletion of CTLs accelerates the onset
of systemic disease (and encephalitis) in SIV-infected
macaques and in pediatric HIV-infected patients with
progressive encephalopathy (Sanchez-Ramon et al,
2003). In addition, other studies suggest that HIV-1
diversity in the brain may reflect CTL escape mu-
tants, which have entered the brain (Morris et al,
1999). Thus, the mechanisms by which CTLs regulate
lentivirus neuropathogenesis by acting on specific vi-
ral sequences remain a critical area of research as it
is for systemic pathogenesis.

Viral replication and neurological disease

Although immune selection is a principal driving
force of viral diversity, augmented viral replication
rates also contribute to increased viral heterogene-
ity (Overbaugh and Bangham, 2001). Conversely, in
nonpathogenic SIV infections limited viral sequence
diversity at the protein level was observed despite
high replication levels, whereas pathogenic infection
showed substantial protein sequence diversity at sim-
ilar replication levels (Rey-Cuille et al, 1998). In gen-
eral, HIV-1 strains isolated from the CNS replicate
at lower levels compared to blood-derived viruses,
which in part may reflect brain-derived viruses’ pref-
erence for CCR5 and macrophage tropism. In HIV-
1 systemic disease, increased viral load in blood is
a key parameter by which viral burden can be as-
sessed (Mellors et al, 1997). In contrast, the associa-
tion between plasma, brain, or CSF viral load and the
development of neurological disease remains contro-
versial. Several reports propose correlations between
HIV-1 RNA, provirus, and antigen levels in the brain
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and CSF with HAD presence and severity (Brew et al,
1995; De Luca et al, 2002; Demuth et al, 2000; Ellis
et al, 1997; Zink et al, 1999). Viral load in the CSF
is likely derived from both brain parenchyma and
blood (Ellis et al, 2000) and rapid turnover of virus
in these compartments (Eggers et al, 2000). Other
studies have not shown associations between HIV-
1 plasma or brain viral (RNA and provirus) load
and the development and severity of HAD (Johnson
et al, 1996; Lazarini et al, 1997; McArthur et al, 1997;
McClernon et al, 2001). Similarly, brain viral loads in
lentivirus animal models do not differ between neu-
rovirulent and non-neurovirulent viral strains (John-
ston et al, 2002b) and are not correlated with the
severity of neurobehavioral abnormalities (Murray
et al, 1992; Power et al, 1998a), unlike initial virus
input titer in the brain, which seems to govern the
subsequent severity of neurobehavioral dysfunction
in some models (Johnston et al, 2002a). Nonethe-
less, viral load in select regions of the brain and in
CSF are positively correlated with the presence of
HIV encephalitis (Wiley et al, 1998). In autopsied
brain tissue from AIDS patients, unintegrated circu-
lar proviral DNA (ccDNA) has been found in HIV-1–
infected patients with clinical signs of HAD but not
in nondemented patients (Pang et al, 1990; Teo et al,
1997). The circular forms are considered unstable
dead-end products of the reverse transcription step
but indicative of ongoing viral replication (Bukrin-
sky et al, 1992; Pauza et al, 1994; Sharkey et al,
2000). Two recent studies showed that among pa-
tients on HAART with prolonged low or undetectable
viral loads, ccDNAs were easily detectable in their
peripheral blood mononuclear cells (PBMCs) (Cara
et al, 2002; Sharkey et al, 2000). This observation
may indicate continuing replication in a viral reser-
voir not susceptible to antiretroviral drugs or alter-
natively ccDNA may be more stable than previously
thought and can persist for months (Cara et al, 2002).
If the latter is the case, the presence of ccDNA in the
brain of patients with clinical disease may reflect vi-
ral replication that preceded the onset of neurological
disease and explain the lack of correlation between
parenchymal viral load and neurological disease
development.

Additional mechanisms by which increased HIV-
1 genetic diversity can arise include recombination
with or without preceding superinfection by another
HIV strain. Recombination would allow for the in-
troduction of many genetic changes simultaneously,
resembling the antigenic shifts observed with in-
fluenza virus genome segment reassortment (Malim
and Emerman, 2001). Recombinant HIV-1 genomes
are present in infected humans and their recent clas-
sification as separate clade illustrates the importance
of this phenomenon in the HIV-1 pandemic. Brain-
derived viral species have also been found to undergo
recombination (Morris et al, 1999; Zhang et al, 2001),
although rigorous phylogenetic analysis revealed that
these represented a minor subset of viral sequences

(Zhang et al, 2001). The impact of recombinant vi-
ral strains on neurological disease development has
not been assessed to date. Moreover, technical prob-
lems such as recombination during polymerase chain
reaction (PCR) amplification and phenomena such
as transplicing may complicate the identification of
these viral species (Fang et al, 1998). However, the
power of viral recombination to generate novel viral
varieties warrants further attention, especially with
the growing number of reports of patients infected
simultaneously and persistently with multiple HIV
strains (Altfeld et al, 2002; Blackard et al, 2002; Jost
et al, 2002). In SIV encephalitis, phylogenetic studies
suggest that recurrent neuroinvasion by different vi-
ral mutants arising because rapid evolution within
the host contributes to viral diversity in the brain
(Ryzhova et al, 2002). To date there is limited evi-
dence for HIV-1 superinfections contributing to vi-
ral diversity in the brain and/or neuropathogenesis
but viral superinfection nonetheless remains one of
the chief mechanisms by which an agent’s virulence
is augmented (Blackard et al, 2002; Gottlieb et al,
2004; Lipsitch et al, 1995). Together with the bur-
geoning emergence of drug resistant viruses, super-
infection may become a more important factor in the
future.

Viral diversity and therapeutics

Many of the drugs used as antiretroviral therapies
do not readily cross the BBB, leading to the realiza-
tion that the CNS as an important viral reservoir, is
not efficiently targeted by the current treatment reg-
imens (reviewed in Richman, 2001). Drug resistant
viral strains have been found in both the CSF and
brain of patients receiving antiviral therapy includ-
ing drugs considered to have efficient CNS penetra-
tion (Bratanich et al, 1998; Lanier et al, 2001; Venturi
et al, 2000; Wong et al, 1997). In one study, drug-
resistant viral sequences were found in the brain of
a patient 14 months after termination of antiviral
therapy, thereby illustrating the long-lived nature of
viruses in the CNS reservoir (Gatanaga et al, 1999).
The continuous replication of drug resistant HIV-1
during antiviral therapy not only can escalate clini-
cal drug resistance (Richman, 2001), but also allows
genes not targeted by antiviral drugs to evolve more
rapidly (Brown and Cleland, 1996; Frost et al, 2001;
Sheehy et al, 1996). To combat the ongoing viral repli-
cation in the brain, efforts have been increased in de-
signing antiviral drugs, such as abacavir, which show
high CNS penetration (Lanier et al, 2001). However,
despite the ongoing development of therapeutics, vi-
ral drug resistance will remain a challenge, especially
in patients previously treated with drugs that exhibit
limited BBB penetration.

Although HAART has been remarkably successful
in increasing life expectancy and reducing neurolog-
ical disease incidence, it has resulted in an increase



HIV-1 diversity and neurological disease
118 G van Marle and C Power

of HIV-related neurological disease prevalence (Brew
and Dore, 2000; Dore et al, 1999; Neuenburg et al,
2002; Sacktor et al, 2002), likely because survival
times have concomitantly been extended. Nonethe-
less, among patients in whom HAART is successful in
reducing the plasma viral load, the viral envelope se-
quence continues to evolve (Frost et al, 2001). More-
over, fluctuations in the viral load, with changes in
HAART regimens or structured treatment interrup-
tions (STIs) (Garcia et al, 2001; Ruiz et al, 2001), may
increase viral molecular variability and perhaps in-
directly influence neurological disease onset and or
progression. Although no detectable viremia may be
present, active replication occurs in other compart-
ments in the body among patients receiving HAART
(Natarajan et al, 1999; Schrager and D’Souza, 1998).
These issues have yet to be critically assessed with re-
spect to neurological disease emergence (Price et al,
2001).

Figure 5 The impact of differing selective pressures acting on HIV-1 during infection that influence viral diversity. In the periphery or
blood, the immune response (either cellular or humoral) and the availability of cells for infection, such as lymphocytes and macrophages
and cells in other viral reservoirs, determine viral evolution towards increased neuroinvasion (CNS entry), neurotropism (infection of
microglia, macrophages, neurons, and astrocytes), and ultimately neurovirulence (neuronal damage or death). Viral diversity, represented
by the color variation in the virions, results from differing selection pressures in the periphery. In turn after neuroinvasion, either through
direct transport of virions or via trafficking of infected cells across the blood-brain barrier (BBB), the virus also drives neurovirulence
following infection. Viral replication in the perivascular monocytoid cells (PVMϕ) and microglia (neurotropism) together with the in-
complete infection of astrocytes results in induction and release of neurotoxins (nitric oxide (NO), quinolinic acid (QA), glutamate,
matrix metalloproteases (MMP) together with viral proteins (gp120, Tat), and in neuroinflammatory responses (TNF-α, IL-1β, MMPs),
culminating in cell death among neurons and astrocytes.

Conclusions and future prospects

HIV-1 infection of the CNS is currently defined by
the predominance of R5-dependent and nonsyncytia-
inducing viruses, infection of chiefly macrophages
and microglia with concurrent activation of these
cells, together with viral evolution towards neuro-
compartmentalization (Figure 5). These latter find-
ings are largely derived from molecular and phy-
logenetic analyses of HIV-1 LTR, Tat, Gag/Pol, and
envelope sequences. The data collected to date indi-
cate that viral diversity in both the brain and blood
appears greater among patients with HAD compared
to patients without neurological disease. Herein lies
a major gap in the understanding of neurovirologi-
cal dynamics, as most viral studies of the CNS are
predicated on examining autopsied patients with
end-stage disease, together with limited analysis of
matched blood samples for which in many cases there
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is limited clinical information. Although lentivirus
animal models have provided insights into neu-
ropathogenesis, animals infected with single (cloned)
viruses may not represent the realities of patients in-
fected with heterogenous quasipsecies. Indeed, viral
heterogeneity may contribute to neuropathogenesis
through multiple mechanisms, including differen-
tial activation of receptor-mediated pathways and
stress responses. Distinct HIV-1 strains causing HAD
have yet to be identified, although the select neu-
ropathogenic effects of different HIV-1 Tat and enve-
lope proteins raise the possibility of their existence.
Viral load in the brain parenchyma is not consistently
correlated with the occurrence of HAD, but CSF vi-
ral load is correlated with the severity of dementia
and the presence of encephalitis. These observations
coupled with the findings that brain-derived HIV-1
isolates selectively induce a myriad of pathogenic
signaling pathways in neural cells underscore the im-
portance of viral diversity in the CNS.

The precise mechanisms by which viral diver-
sity is increased among HAD patients’ blood and
brain remains unclear. Greater viral diversity in blood
among HAD patients may reflect fundamental im-
mune dysregulation, enabling a broader quasispecies
to emerge. By increasing viral diversity within the
CNS, the potential to avoid host immune regula-
tion is greater and subsequently the opportunities are
increased for viruses to initiate a broader range of
pathogenic pathways through interactions between
virus-encoded proteins and host cells. This man-
ifests as both direct effects of the virus on target
cells such as neurons but also as indirect mecha-
nisms through interactions with effector cells includ-
ing macrophages, microglia and astrocytes (Figure 5).
Although considerable progress has been made in our
efforts to elucidate the underlying principles govern-
ing HIV-1 pathogenesis, the overwhelming viral di-
versity and the outbred nature of the human host
make it difficult to pinpoint the key pathogenic de-
terminants in both systemic and neurologic disease
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